Bagfilter
Performance
Monitoring
using
Particulate
Monitors
The maintenance of modern bag- and cartridge-filter systems is normally both a time-consuming and costly activity, especially where multi-compartment baghouses are concerned. Maintenance of both pulse-jet filters (on-line cleaned) and reverse-air filters (off-line cleaned) is often undertaken in unpleasant conditions with limited available time. To help overcome these maintenance issues, ENVEA supply a range of advanced Predictive Monitoring Solutions utilising the world’s most advanced particulate monitoring systems, which comply with International Standards, including EN 15859 and US EPA MACT. Combined with ENVEA’s ‘Predict’ PC software package, a complete preventative maintenance solution for both on-line and off-line cleaned bag filters, this gives filter maintenance and Process operators the ability to optimise filter performance, extend bag life and reduce operating costs.

Particulate monitoring systems are generally purchased to monitor environmental emissions to atmosphere, although many instruments are also used as preventative maintenance tools for filter plant.

The ability to predict when a filter is likely to fail, and to be able to identify which row or chamber is at fault, provides a method to not only reduce the environmental impact and clean-up costs associated with emission events, but also to make significant savings in spares, maintenance times and lost production.

Filter media is normally changed on a regular basis, typically based on experience or on filter manufacturers’ recommendations. This can be both costly and time-consuming, resulting in either filter elements being changed when there is still serviceable life to be had or, alternatively, in running the baghouse too long resulting in particulate leakage and eventually gross filter failure due to excessive bag wearing. Quite often bag filters are operated with leaks unknown to operators.

ENVEA’s patented ElectroDynamic sensors offer the most dynamic sensing technology currently available for bag-filter emission monitoring. Their unique patented non-contact charge-induction measurement technique provides the capability to remotely access the filter’s cleaning signature by accurately tracking the very dynamic dust emissions created during a bag-filter cleaning cycle. Other techniques struggle to provide the same quality of data required to either detect small leaks or retain a stable enough baseline (e.g. Opacity and Triboelectric dust monitors).

During the pulse-jet cleaning cycle, the pores in the filter media temporarily expand and allow dust to pass through, resulting in peaks in the measured dust level. Over time these pores deteriorate and increase in size. This leads to a reduction of the filter’s efficiency, which results in ‘leaks’. If a pore deteriorates so much that it breaks or tears, then much higher than expected emissions are produced in a relatively short period of time. This increase in emissions is clearly observed by the Sensor System (as shown in the graph below), and the differences between a ‘leak’ and a ‘Broken bag’ can be displayed clearly.

By monitoring these emissions peaks in real-time using ENVEA’s ‘Predict’ PC software, it is possible to identify potential problems within each filter compartment before they result in breaches of environmental limits. Marker pulses generated from the filter’s cleaning system allow easy identification of damaged rows. The fast-moving dust peak with short time duration is typically not identified by dust monitors used for main stack. Compliance monitoring where longer-term emission averaging is required and slow responding analogue outputs (4-20mA) are used primarily for emission data collection and not filter performance monitoring. Typically, it is not possible to manage filter cleaning data using analogue outputs, as they do not have the required resolution or data update rates.

Data – Display and Management Options

As well as being able to display data on the system’s control unit, ENVEA also offer options to view and manage data in locations across the site, either next to the bag compartments or in a remote control room.

ProController and ‘Filter Display Module’

By monitoring these emissions peaks in real-time using ENVEA’s ‘Predict’ PC software, it is possible to identify potential problems within each filter compartment before they result in breaches of environmental limits. Marker pulses generated from the filter’s cleaning system allow easy identification of damaged rows. The fast-moving dust peak with short time duration is typically not identified by dust monitors used for main stack. Compliance monitoring where longer-term emission averaging is required and slow responding analogue outputs (4-20mA) are used primarily for emission data collection and not filter performance monitoring. Typically, it is not possible to manage filter cleaning data using analogue outputs, as they do not have the required resolution or data update rates.
Multi-compartment filter management

Both Reverse Air and Pulse Jet Multi-chamber Bag Filters are becoming more and more common throughout industry. Regulatory demands to reduce the amount of particulate emitted from a wide range of processes are resulting in their installation to both replace Electro-filters on existing sites and to provide the prime dust-filter solution in new applications.

The decision to install filter management systems is not only driven by the need to minimise emissions and be compliant with regulatory standards but also to maintain optimum performance of the filter, and in turn increase plant process efficiency. US EPA MACT rules also make the use of Bag Leak Detectors compulsory in many industries, to assure individual filter- and bag-chamber functionality.

Reverse Air Filters (Off-Line Cleaning)

At present, the investigation of compartment failure on a Reverse Air Bag-Filter System usually takes place after large-scale dust emissions are evident at the main stack, either by visual analysis or from the response of a main stack Continuous Emission Monitoring System (CEM).

The issue with this is that it is an after-the-event notification of failure, normally resulting in high levels of environmental pollution, and it cannot highlight which compartment is at fault. The use of an ElectroDynamic® monitoring system on each compartment outlet together with the use of advanced PC software, the PC-ME Dust Tools software suite, allows the identification of compartment deterioration before high levels of environmental emissions become apparent.

Pulse Jet Filters (On-Line Cleaning)

In processes using Multi-Chamber Pulse Jet Filters, the performance of each individual filter compartment can be observed in even greater detail. ‘Predict Plus’ allows plant operators to observe the real-time changes in baseline emissions and to have instantaneous, plant-wide access to the functionality of their filter systems. It is now possible to observe each chamber’s cleaning cycle in real-time to identify which row is starting to fail before high emissions occur.

The cost benefits of networked filter management systems have been proven on large Baghouse applications in differing industrial settings worldwide. These systems have in many instances provided payback in less than 12 months through increases in plant efficiency and reduced maintenance costs.

ABOUT ENVEA

As a progressive environmental Company, ENVEA specialises in particulate measurement for industrial processes. With a worldwide reputation for reliability, innovation and technological excellence, the Company produces under the trademark envea™ equipment for concentration and mass monitoring for regulatory, environmental and process control requirements. A dedicated team of qualified application and sales engineers is always on hand and should be consulted in the selection and usage of the most suitable equipment for any particulate application.

ENVEA UK
ENVEA House Rose and Crown Road
Swavesey / Cambridge - UK CB24 4RB
☎ +44 (0)1480 468200
✉ contact.gb@envea.global

www.envea.global