Bagfilter Performance Monitoring using Particulate Monitors
Pro-active maintenance solutions reduce costs and increase production

The maintenance of modern bag and cartridge filter systems is normally both a time consuming and costly activity especially where multi-compartment baghouses are concerned. Maintenance of both pulse jet filters (on-line cleaned) and reverse air filters (off-line cleaned) is often undertaken in unpleasant conditions with limited available time. To help overcome these maintenance issues, PCME supply a range of advanced Predictive Monitoring Solutions utilising the world’s most advanced particulate monitoring systems which comply to International Standards including EN-15659 and US EPA MACT. Combined with PCME’s ‘Predict’ PC software package, a total preventative maintenance solution for both on-line and off-line cleaned bag filters, this enables filter maintenance and Process operators the ability to optimise filter performance, extend bag life and reduce operating costs.

PCME’s patented ElectroDynamic™ sensors offer the most dynamic sensing technology currently available for bag filter emission monitoring. Their unique patented non-contact charge-induction measurement technique provides the capability to remotely access the filter’s cleaning signature by accurately tracking the very dynamic dust emissions created during a bag filter cleaning cycle. Other techniques struggle to provide the same quality of data required to either detect small leaks or retain a stable enough base line (e.g. Opacity and Triboelectric dust monitors).

During the pulse-jet cleaning cycle, the pores in the filter media temporarily expand and allow dust to pass through resulting in peaks in the measured dust level. Over time, these pores deteriorate and increase in size. This leads to a reduction of the filter’s efficiency which results in ‘leaks’. If a pore deteriorates so much that it brakes/tears, then much higher than expected emissions are produced in a relatively short period of time. This increase in emissions is clearly observed by the Sensor System (as shown in the graph below), and the differences between a ‘Leak’ and a ‘Broken bag’ can clearly be displayed.

The ability to predict when a filter is likely to fail and to be able to identify which row or chamber is at fault provides a method to not only reduce the environmental impact and clean-up costs associated with emission events, but also to make significant savings in spares, maintenance times and lost production.

Filter media is normally changed on a regular basis, typically based on experience or on the filter manufacturers recommendations. This can be both costly and time consuming, resulting in either filter elements being changed when there is still serviceable life to be had or alternatively the bag house is run too long resulting in particulate leakage and eventually gross filter failure due to excessive bag wearing. Quite often, bag filters are operated with leaks unknown to operators.

By monitoring these emissions peaks in real time using PCME’s ‘Predict’ PC software, it is possible to identify potential problems within each filter compartment before they result in breaches of environmental limits. Marker pulses generated from the filter’s cleaning system allows easy identification of damaged rows. The fast moving dust peak with short time duration is typically not identified by dust monitors used for main stack Compliance monitoring where longer-term emission averaging is required and slow responding analogue outputs (4-20 mA) are used primarily for emission data collection and not filter performance monitoring. Typically, it is not possible to manage filter cleaning data using analogue outputs which do not have the right resolution or data update rates.

Data: Display and Management Options

As well as being able to display data on the system’s control unit, PCME also offer options to view and manage data in locations across the site either next to the bag compartments or in a remote control room.

‘Plus’ Controller and ‘Filter Display Module’

Display on ‘Plus’ Controller showing dust pulses from each bag row being cleaned ‘on-line’

The performance of single compartment bag filters can be observed at the filter by employing a ‘Filter Display Module’

‘Predict’ software: the deterioration of row 10 is highlighted in real time before environmental limits are breached

The use of ‘Predict’ allows:
• Scheduled maintenance
• Reduced maintenance times
• Lower labour costs
• Reduction of spare filter inventories
• Longer bag life
• Increased production time
• Reduced environmental emissions due to better filter control

For more details on PCME’s bagfilter monitoring systems please visit our website www.pcme.com.

Direct Connection to PLC/SCADA

The monitoring network can also be connected to PLCs or directly to the user’s own control systems via several readily available communication protocols including Fast Ethernet, Modbus ASCII, RTU and TCP. These options provide seamless integration into existing operating systems.
Multi-compartment filter management

Both Reverse Air and Pulse Jet Multi-chamber Bag Filters are becoming more and more common throughout industry. Regulatory demands reducing the amount of particulate emitted from a wide range of processes are resulting in their installation to both replace Electro-filters on existing sites and to provide the prime dust filter solution in new applications.

The decision to install filter management systems is driven by the need to not only minimise emissions and be complaint to regulatory standards but also to maintain optimum performance of the filter and in turn increase plant process efficiency. New US EPA MACT rules now also make the use of Bag Leak Detectors compulsory in many industries to assure individual filter and bag chamber functionality.

Reverse Air Filters (Off-Line Cleaning)

At present, the investigation of compartment failure on a Reverse Air Bag Filter System usually takes place after large-scale dust emissions are evident at the main stack, either by visual analysis or from the response of a main stack Continuous Emission Monitoring System (CEM). The issue with this is that it is an after the event notification of failure normally resulting in high levels of environmental pollution and it cannot highlight which compartment is at fault. The use of an ElectroDynamic™ monitoring system on each compartment outlet together with the use of advanced PC software (‘PC-ME Dust Tools’) allows the identification of compartment deterioration before high levels of environmental emissions become apparent.

Pulse Jet Filters (On-Line Cleaning)

In processes using Multi-Chamber Pulse Jet Filters, the performance of each individual filter compartment can be observed in even greater detail. ‘Predict Plus’ allows plant operators to observe the real-time changes in base line emissions and to have instantaneous, plant-wide access to the functionality of their filter systems. It is now possible to observe each chamber’s cleaning cycle in real time to identify which row is starting to fail before high emissions occur.

The cost benefits of networked filter management systems have been proven on large Baghouse applications in differing industrial settings worldwide. These systems have in many instances provided payback in less than 12 months through increases in plant efficiency and reduced maintenance costs.